A joint initiative of the ETH domain and Swiss Federal Offices
metals treatment and compressed air supply

Rolf Frischknecht, Roland Steiner
ESU-services Ltd.
Contents

• Overview of processes analysed
• General modelling principles
• Description of life cycle inventories of machine processing
• Conclusions
Overview of processes analysed

- Average machine processing
- Degreasing of metal surfaces
- Chipping
- Laser machining
- Chippless shaping
- compressed air supply
Modelling principles: capital equipment

- factory infrastructure:
 demand of a share of capital equipment included in all machining datasets

- exception “laser machining”:
 no factory hall demand included, as no correlation between machining hours and factory infrastructure

- exception “compressed air supply”:
 considered ancillary process (e.g., to metals machining) in a factory
Modelling principles: Degreasing

- machining datasets do NOT include degreasing
 Reason:
 - machining is per mass (or time in the case of laser machining)
 - degreasing is per surface
- “surface to mass” ratio must be known
- practitioner needs to add degreasing dataset to each individual machining dataset
Modelling principles: Reference unit and material input

• chipping datasets:
 - per kg material removed
 - material removed is an input

• chipless shaping:
 - per kg material processed
 - no material input

• laser machining:
 - per hour processing
 - no material input (a few mg/sec)

• compressed air supply:
 - per m³ comp. air supplied (including losses in the network)
 - per m³ comp. air produced
Average machine processing

- average product manufacturing:
 steel
 chromium steel
 aluminium
 copper
 metal (82.4/2.0/3.3/12.2 %)

- additional datasets:
 - machine (manufacturing)
 - machine operation
 - factory (construction)
 - factory operation
 - metal input
Inventory data

- Data from 8 mechanical processing machines
- Average capacity about 8’000 tons from 44 to 210’000 tons capacity
- data from 2003 to 2006
- data includes
 - solvents, consumption
 - solvents, emission: 0.56g/kg metal product
 - lubricating oil
 - compressed air
 - thermal energy
 - electricity
machine and factory

- manufacture data: based on the same 8 machines
- factory operation: ancillary energy consumption, water consumption and wastes generated
- metal working factory:
 - includes building hall and land use
 - data based on three manufacturers
Degreasing of metals

- industry data from European household device manufacturer
- inventory data includes:
 - electricity
 - thermal energy
 - industrial cleaning detergents
 - sodium chloride
 - sulphuric acid
 - water
Turning

- Two phases in treatment: roughing, dressing and average
- Two different technologies: conventional and CNC (Computerized Numerical Control)
- Five different metals: steel, NiCr-steel, cast iron, aluminium, brass
- Inventory data:
 - electricity
 - compressed air (CNC only)
 - lubricating oil (CNC only)
 - factory (operation and construction)
 - amount of metal removed
Results: ecological scarcity 06

<table>
<thead>
<tr>
<th>Material</th>
<th>Ecopoints/kg removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td></td>
</tr>
<tr>
<td>Brass</td>
<td></td>
</tr>
<tr>
<td>Cast iron</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td></td>
</tr>
</tbody>
</table>

- **Aluminium**: Minor contribution in ecological scarcity.
- **Brass**: Significant contribution, primarily in land use and natural resources.
- **Cast Iron**: Moderate contribution, primarily in energy resources.
- **Chromium**: Minor contribution, primarily in emission into ground water.
- **Steel**: Moderate contribution, primarily in land use and energy resources.
Contributions: ecological scarcity 06

- Emission into top soil
- Waste
- Land use
- Natural resources
- Energy resources
- Emission into ground water
- Emission into surface water
- Emission into air

Graph showing contributions to ecological scarcity from various activities:
- Electricity
- Machine
- Factory
- Factory operation
- Aluminium

The graph indicates the ecopoints/kg removed for each activity, with aluminium having the highest contribution.
Drilling

- Two different technologies: conventional and CNC
- Five different metals: steel, chromium steel, aluminium, copper, brass
- Inventory data:
 - electricity
 - compressed air (CNC only)
 - lubricating oil (CNC only)
 - capital equipment
 - factory operation
 - amount of metal removed
Results: ecological scarcity 06

![Graph showing ecological scarcity for different materials and processes](image)

- **Aluminium**, **Brass**, **Cast Iron**, **Chromium**, **Steel**
- **CNC drilling**
- **Ecopoints/kg removed**

Legend:
- Emission into top soil
- Waste
- Land use
- Natural resources
- Energy resources
- Emission into ground water
- Emission into surface water
- Emission into air
Milling

- Four different process modes:
 large and small parts, dressing and average
- Four different metals:
 steel, chromium steel, cast iron, aluminium
- Inventory data:
 - electricity
 - compressed air
 - lubricating oil
 - amount of metal removed
Results: ecological scarcity 06

![Bar chart showing ecological scarcity for different materials.

- Aluminium:
 - Emission into top soil: 2000
 - Waste: 4000
 - Land use: 6000
 - Natural resources: 8000
 - Energy resources: 10000
 - Emission into ground water: 12000
 - Emission into surface water: 14000
 - Emission into air: 16000

- Cast iron:
 - Emission into top soil: 2000
 - Waste: 4000
 - Land use: 6000
 - Natural resources: 8000
 - Energy resources: 10000
 - Emission into ground water: 12000
 - Emission into surface water: 14000
 - Emission into air: 16000

- Chromium steel:
 - Emission into top soil: 2000
 - Waste: 4000
 - Land use: 6000
 - Natural resources: 8000
 - Energy resources: 10000
 - Emission into ground water: 12000
 - Emission into surface water: 14000
 - Emission into air: 16000

- Steel:
 - Emission into top soil: 2000
 - Waste: 4000
 - Land use: 6000
 - Natural resources: 8000
 - Energy resources: 10000
 - Emission into ground water: 12000
 - Emission into surface water: 14000
 - Emission into air: 16000

Presentation: Rolf Frischknecht
Contributions: ecological scarcity 06

- Emission into top soil
- Waste
- Land use
- Natural resources
- Energy resources
- Emission into ground water
- Emission into surface water
- Emission into air

Diagram showing contributions to ecological scarcity in milling, average.

Presentation: Rolf Frischknecht
Laser machining of metals

- Two different laser systems:
 - YAG (Yttrium-Aluminium garnet)
 - CO$_2$

- Different laser sizes:
 - YAG: 30, 40, 50, 60, 120, 200, 330, 500 W
 - CO$_2$: 2, 2.7, 3.2, 4.0, 5.0, 6.0 kW

- Total operation time:
 - YAG: 2 hours/day; 5 days/week; 15 years
 - CO$_2$: 12 hours/day; 5 days/week; 15 years
Laser machining: inventory data

- YAG laser systems:
 - electricity
 - cooling water (larger units only)
 - air emissions of particulates, \(\text{NO}_x \), and ozone
 - machine manufacture

- \(\text{CO}_2 \) laser systems:
 - electricity
 - industrial gases (helium, nitrogen, carbon dioxide)
 - air emissions of helium, particulates, \(\text{NO}_x \), \(\text{CO}_2 \), and ozone
 - machine manufacture
Results: ecological scarcity 06

- YAG, 40W
- YAG, 120W
- YAG, 500W
- CO2, 2000W
- CO2, 6000W

- Emission into top soil
- Waste
- Land use
- Natural resources
- Energy resources
- Emission into ground water
- Emission into surface water
- Emission into air
Contributions: ecological scarcity 06

- Laser machining of metal, YAG, 500W
- Contributions include:
 - Laser machining
 - Electricity
 - Industrial gases
 - Machine
 - Transports

- Emission contributions:
 - Emission into top soil
 - Waste
 - Land use
 - Natural resources
 - Energy resources
 - Emission into ground water
 - Emission into surface water
 - Emission into air

- Ecopoints/hour operation:
 - Laser machining: 0
 - Electricity: 45,000
 - Industrial gases: 10,000
 - Machine: 500
 - Transports: 0

- Overall ecological scarcity: 0
Impact extrusion

- Three different levels of temperature:
 cold ($T/T_{\text{melt}} < 0.3$), warm, hot ($T/T_{\text{melt}} > 0.6$)
- two different metals:
 - steel
 - aluminium (cold IE only)
- Datasets on
 - surface treatment (cold IE only)
 - warming (warm/hot IE only)
 - deformation stroke
 - 1 to five stroke treatments
- Inventory data:
 energy inputs, capital equipment and factory operation
Results: ecological scarcity 06

- Cold, aluminium
- Cold, steel
- Warm, steel
- Hot, steel

Impact extrusion, 5 strokes

<table>
<thead>
<tr>
<th>Material</th>
<th>Emission into Top Soil</th>
<th>Waste</th>
<th>Land Use</th>
<th>Natural Resources</th>
<th>Energy Resources</th>
<th>Emission into Ground Water</th>
<th>Emission into Surface Water</th>
<th>Emission into Air</th>
</tr>
</thead>
</table>
Contributions: ecological scarcity 06

Impact extrusion, aluminium, 5 strokes

- Emission into top soil
- Waste
- Land use
- Natural resources
- Energy resources
- Emission into ground water
- Emission into surface water
- Emission into air

Ecopoints/kg processed

- Deformation stroke
- Surface treatment
- Heat treatment
- Compressed air
- Machine
- Factory
- Factory operation
Deep drawing

- Two different modes: single stroke and continuous
- Different press sizes: 650, 3’500, 10’000, 38’000 kN
- one metal: steel
- Inventory data:
 - electricity,
 - compressed air
 - capital equipment
 - factory operation
Compressed air supply
Compressed air supply system

- compressor
- compressed air storage container (opt.)
- dryer (opt.)
- filter (opt.)
- pipe network (for distribution)
- consumer devices
Drivers of electricity consumption

- leakage rate
- pressure level
- appropriateness of control settings
- size of compressor

increase in electricity consumption due to filter and dryer:
- small installations: 5 %
- large installations: 3 %
Compressors installed in Switzerland

<table>
<thead>
<tr>
<th>installed compressors</th>
<th>power in kW</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><3</td>
<td>3-15</td>
</tr>
<tr>
<td>installed</td>
<td>110‘000</td>
<td>30‘000</td>
</tr>
<tr>
<td>compressors</td>
<td>74 %</td>
<td>20 %</td>
</tr>
<tr>
<td>electricity consumption</td>
<td>11</td>
<td>150</td>
</tr>
<tr>
<td>[GWh]</td>
<td>1 %</td>
<td>20 %</td>
</tr>
</tbody>
</table>

Presentation: Rolf Frischknecht
Key figures compressors & network

- life time: 15 years
- 750 hours per year
- machine weight:
 4 kW: 140 kg (35 kg/kW)
 300 kW: 4600 kg (15 kg/kW)
- increase in electricity consumption due to filter and dryer:
 - small installations: 5 %
 - large installations: 3 %
- pipe diameter: 100 mm
- network length: 4’500 m
- 100 mg steel (large), 34 mg aluminium (small) per Nm³
Datasets available

- Two different compressor sizes:
 <30 kW, >30 kW
- Three different pressure levels:
 - <30 kW: 8, 10, 12 bar
 - >30 kW: 6, 7, 8 bar
- Three different technology levels:
 - average
 - optimised
 - best generation (>30 kW only)
Electricity consumption

- Average, large
- Optimised, large
- Best generation, large
- Average, small
- Optimised, small

Graph showing the electricity consumption in kWh/Nm³ at compressor average, large, optimised, large, best generation, large, average, small, optimised, small.
Inventory data

- leakage rate > 30 kW:
 - average: 30 %
 - optimised: 15 %
 - best generation: 10 %

- leakage rate < 30 kW:
 - average: 50 %
 - optimised: 5 %

- lubricating oil:
 - small: 10 mg / Nm3
 - large: 2.1 mg / Nm3
Results: cumulative energy demand

<table>
<thead>
<tr>
<th>Type</th>
<th>Energy Demand (MJ-eq/Nm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small, 10 bar,</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>Optimised</td>
<td></td>
</tr>
<tr>
<td>Large, 7 bar,</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>Optimised</td>
<td></td>
</tr>
<tr>
<td>Optimised, best</td>
<td></td>
</tr>
</tbody>
</table>

- Wind
- Water
- Solar
- Primary forest
- Nuclear
- Geothermal
- Fossil
- Biomass

Compressed air, supplied
Results: ecological scarcity 06

- <30kW, 8 bar
- <30kW, 10 bar
- <30kW, 12 bar
- >30kW, 6 bar
- >30kW, 7 bar
- >30kW, 8 bar

Legend:
- Green: Waste
- Yellow: Land use
- Orange: Energy resources
- Blue: Natural resources
- Brown: Emission into top soil
- Light blue: Emission into surface water
- Pink: Emission into air

Graph shows the ecological scarcity results for different compressed air supplies, optimised.
Contributions: ecological scarcity 06

- Compressor, 4 kW: 300 ecpooints/Nm³ produced
- Lubricating oil: 250 ecpooints/Nm³ produced
- Electricity: 100 ecpooints/Nm³ produced
- Transport: 50 ecpooints/Nm³ produced
- Disposal: 300 ecpooints/Nm³ produced

Emissions:
- Emission into ground water
- Waste
- Land use
- Natural resources
- Energy resources
- Emission into top soil
- Emission into surface water
- Emission into air

Compressed air supply, small, 10 bar
Contributions: ecological scarcity 06

- compressor, 300 kW
- lubricating oil
- electricity
- transport
- disposal

Graph showing contributions to ecological scarcity with categories:
- emission into ground water
- waste
- land use
- natural resources
- energy resources
- emission into top soil
- emission into surface water
- emission into air

The image shows a large industrial machine.
Conclusions

- chipping processes: production of material removed is dominant
- chipless shaping: deformation energy and general factory operation are most important
- laser machining dependent on power needed
- compressed air: substantial difference particularly between average, optimised and best
- metal machining datasets do not include degreasing => add it separately
Thank you very much for your attention!

Rolf Frischknecht
frischknecht@esu-services.ch