ecoinvent data v2.0
Life-Cycle Inventories of Petrochemical Solvents and Highly Pure Chemicals

Gregor Wernet, Jürgen Sutter, ecoinvent Centre
New ecoinvent data v2.0

- Two projects:
 - petrochemical solvents
 - highly pure chemicals

- Detailed information on project goals, contents, dataset quality

- Examples of data generation

Petrochemical Solvents

- Annual solvent consumption in Europe alone was 4 million tonnes in 2004
- Roughly 250 to 300 solvents are generally available to chemists, but not all are used on a large scale
- Uses in
 - paint and coatings industry
 - chemical industry (production of pharmaceuticals, agrochemicals, specialty chemicals)
 - metal cleaning and degreasing
 - rubber and plastics manufacture
 - detergents and personal care products
Petrochemical Solvents

- Project size was limited to 50 chemicals

- Solvents were classified into various chemical groups (alcohols, aliphatic and aromatic hydrocarbons, ethers, ...)

- Important representative chemicals of all groups were selected based on production data, technical literature and a survey of the Swiss chemical industry

List of the 50 solvents

<table>
<thead>
<tr>
<th>Aliphatic Hydrocarbons</th>
<th>Alcohols</th>
<th>Esters</th>
<th>Ethers and glycolethers</th>
<th>Acids</th>
<th>Ketones</th>
<th>Amides and other N-compounds</th>
<th>Other solvents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pentane</td>
<td>• Benzy alcohol</td>
<td>• Methyl formiate</td>
<td>• Diethyl ether</td>
<td>• Formic acid</td>
<td>• Acetone</td>
<td>• Acetonitrile</td>
<td>• Dimethylsulfoxide</td>
</tr>
<tr>
<td>• Hexane</td>
<td>• 1-Butanol</td>
<td>• Butyl acetate</td>
<td>• Dioxane</td>
<td>• Cyclohexanone</td>
<td>• Cyclohexanone</td>
<td>• N,N-Dimethylformamide</td>
<td>• Acetic anhydride</td>
</tr>
<tr>
<td>• Isohexane</td>
<td>• 2-Butanol</td>
<td>• Ethyl acetate</td>
<td>• Ethylene glycol dimethyl ether</td>
<td>• Methyl ethyl ketone</td>
<td>• Methyl ethyl ketone</td>
<td></td>
<td>• N-Methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>• Heptane</td>
<td>• Isobutanol</td>
<td>• Isobutyl acetate</td>
<td>• Ethylene glycol monoethyl ether</td>
<td>• Methyl isobutyl ketone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Butylene glycol</td>
<td>• Isopropyl acetate</td>
<td>• Ethylene glycol diethyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ethanol</td>
<td>• Isoamyl acetate</td>
<td>• Methyl-tert-butyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methanol</td>
<td>• Methyl acetate</td>
<td>• Tetrahydrofuran</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pentanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2-Methyl-2-butanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Isoamyl alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1-Propanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Isopropanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aliphatic Hydrocarbons</td>
<td>• Acetic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alicyclic Hydrocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cyclohexane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Methyl cyclohexane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aromatic Hydrocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ethyl benzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Toluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Xylene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorinated Hydrocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Chlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Methylene chloride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldehydes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Benzaldehyde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Formaldehyde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Propionaldehyde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Swiss Centre For Life Cycle Inventories
A joint initiative of the ETH domain and Swiss Federal Offices
Solvent Production Routes

- Most solvents are created in one of four chemical routes:
 - **Methanol route**: methanol production from natural gas
 - **Naphta/steam cracking route**: Naphta from crude oil is treated in a steam cracking process
 - **BTX/Naphta separation route**: Naphta from crude oil or BTX reformate is separated in a molecular sieve
 - **BTX splitting route**: BTX reformate or pyrolysis gasoline are separated.

Natural gas and crude oil processing

- Crude oil:
 - Desalting
 - Distillation
 - Vacuum distillation
- Crude oil:
 - Sweetening (sweetening process)
 - Gas processing

Natural gas:
- Chirnacterisation
- Steam reforming
- Synthesis gas
- Methanol synthesis
- Methanol

Route A

Naphta
- Crude oil:
 - Distillation
- Hydrocracking
- Catalytic cracking
- Catalytic reforming
- Gasoline
- Diesel
- Light fuel oil

Route B

Route C

Route D
The Naphta/steam cracking route

Production steps

1. Crude oil
 - Naphtha
 - Steam cracking

2. Methane
 - Hydration
 - Ethylene glycol
 - Dehydration
 - 1-Butanol

3. Butane
 - Hydroformylation
 - Butene
 - Ethylene glycol
 - Dehydration
 - 1-Butanol

4. 2-Butanol
 - Acrylonitrile
 - Propylene glycol
 - Dehydration
 - 1-Butanol

5. Propene
 - Propylene glycol
 - Dehydration
 - 1-Butanol

6. Heavy gas oil
 - Propene
 - Propylene glycol
 - Dehydration
 - 1-Butanol

Energy profile per kg product (Cumulative Energy Demand)

- Formic acid
- Methyl acetate
- Methylene chloride
- Dichloromethane
- Butanol
- Butenes
- MTBE
- Pentane
- Propene
- Isopropyl alcohol
- Isobutyl alcohol
- Isobutyl acetate
- 1-Butanol
- 1-Propanol
- Butyric acid
- Ethylene oxide
- Ethylene glycol
- Diethyl ether
- Monoethyl ether

Starting materials
- 1 process step
- 2 process steps
- 3 process steps
- 4 process steps
The BTX/ Naphtha separation route

C: The BTX/naphtha separating route

Production steps

Crude oil → BTX (naphtha) → Naphtha → Crude oil

Starting material

Molecular sieve Ultra molecular sieve crystallization Superfractionation

α-Hexane Isomerization Isohene

1 process step

Energy profile per kg product (Cumulative Energy Demand)

α-Heptane

BTX splitting route

D: The BTX splitting route

Production steps

Crude oil → BTX (naphtha) → Paraxene splitter

Starting material

1 process step

Solvent Intermediate Unit process
The BTX splitting route

Energy profile per kg product (Cumulative Energy Demand)

New Inventories in ecoinvent 2.0

- 50 solvents were selected for relevance
- LCI data for 11 of these solvents had already been published in ecoinvent 1.1
- LCI data for 3 solvents existed in ecoinvent 1.1 but were replaced by new inventories during the project
- New LCI data were created for 36 solvents
Data Sources

- Whenever possible, actual production data was used to determine inventory flows
- Basic information was gathered from technical reference books
- Necessary estimations were made based on Hischier et al 2004 (Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability)

Data quality

- Actual production data available: 6 solvents
- Data for raw materials and energy available: 13 solvents
- Data for energy available: 5 solvents
- Energy approximated with similar process: 8 solvents
- All data estimated: 7 solvents
Example: Chlorobenzene

- Multi-output process: benzene chlorination
- Benzene + Chlorine \rightarrow Monochlorobenzene + o-Dichlorobenzene + p-Dichlorobenzene
- Data available from US database (Overcash 1998-2001)
- Production data from US chemical industry
- Data available for use of raw materials, auxiliaries, and energy
- Data available for emissions to air and emissions to water
- Data available for yield of co-products \rightarrow allocation

Example: Acetates

- Ethyl acetate (esterification of ethanol and acetic acid)
 - Ethanol + acetic acid \rightarrow ethyl acetate
 - Energy consumption: steam 8.84 MJ/kg, electricity 0.00725 kWh/kg

- These data are used as approximation for energy consumptions of other esterifications:
 - Butyl acetate (1-Butanol + Acetic acid)
 - Isoamyl acetate (Isoamyl alcohol + Acetic acid)
 - Isobutyl acetate (Isobutanol + Acetic acid)
 - Isopropyl acetate (Isopropanol + Acetic acid)
Highly Pure Chemicals

- Part of the ecoinvent 2.0 project *Life cycle Inventories of electric and electronic equipment*
- **IT-services**: report 18_IV
- **Devices**: report 18_III
- **Modules**: report 18_II
- **Components**: report 18_I
- **Disposal**: report 18_V
- **Raw materials**: report 10 (metals)
- **Auxilliaries**: *report 19 (chemicals for IT)*

Chemicals for IT

- *EMPA St. Gallen*: list of **77 chemicals** for IT
 - Batteries: 7 chemicals
 - Hard disc drive: 1 chemical
 - Semiconductors: 16 chemicals
 - Printed wiring board: 26 chemicals
 - Other components: 13 chemicals
 - Others: 4 chemicals
 - Preliminary products: 10 chemicals
- Mostly chemicals not included in previous versions of ecoinvent
List of Chemicals

- Lithium
- Alcohol ethoxylate
- Alkyl oxidized salts
- Ammonia-2-ethanol
- Butyl acetate
- Cellulose acetate
- Diacetone alcohol
- Dibutyl phthalate
- Dimethyl acetylamide
- Dimethylamine borane
- Ethanol
- Ethyl acetate
- Ethyl cellulose
- 4-Fluoro-1,3-dioxolan-2-one
- Fluorouracil
- Hexafluoroethane
- Hexamethyldisilazane
- Hydroxyl monoethanolamine
- Lactic acid
- Methanesulfonic acid
- Methoxy propanol
- Methyl-3-methoxypropionate
- M-Pyrrol
- N-Methyl Pyrrolidone
- Polyacetal
- Polylactone
- Polyglycol mixture
- Polyphenyl oxide
- Polystyrene
- Polyvinyl pyrrolidone
- Polyvinyl sulfide
- Rosin
- Rosin, modified
- Tetramethyl ammonium hydroxide

Inorganics
- Ammonium chloride
- Arsenic
- Carbonic acid
- Chloride as ion
- Diborane
- Dinistogen oxide
- Helium
- Hydrogen bromide
- Iron(III)chloride
- Iron oxide
- LaNiH
- Lead borate
- Lithium carbide
- Lithium carbonate
- Lithium hydroxide
- Lithium manganese oxide
- Nitrogen trifluoride
- Phosphine
- Phosphoryl chloride
- Potassium carbonate
- Potassium perchlorate
- Silane
- Sodium persulfate
- Sulphuric peroxide
- Trichloroborane
- Trifluoroborane
- Tungsten fluoride
- Water, ultrapure

Others
- Acid cleaner
- Anti tarnish
- Banking agent
- Diazo film
- Foam Free 940 Defoamer
- Gas cleaner
- Solder leveller (HAZL)

Chemicals for IT

- LCI data created in this project: 30 chemicals (+ precursors)
- Existing LCI in ecoinvent v1.1: 1 chemical
- LCI data from solvents project: 5 chemicals
- LCI data from photovoltaics project: 3 chemicals
- LCI data created by EMPA: 3 chemicals
- Approximated with data from v1.1: 17 chemicals
- Others: Approximated with with DS "chemicals, organic, at plant, RER" or "chemicals, inorganic, at plant, RER"
Data Sources (cf. Solvent Project)

- Whenever possible, actual production data was used to determine inventory flows
- Basic information was gathered from technical reference books
- Necessary estimations were made based on *Hirschier et al 2004* (Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability)

Example: Water, ultrapure

- Purification steps:
 - tap water \rightarrow water, decarbonised \rightarrow water, ultrapure
- Purification:
 - ion exchangers (resins), membranes, electrodeionization
- Dataset is calculated with literature data for electrodeionization
Example: Lithium route

- Lithium (electrolysis of lithium chloride): data from literature (Wietelmann 2000)
- Lithium chloride (chlorination of lithium carbonate): energy data from literature (Kim 2003)
- Lithium manganese oxide (sintering of lithium carbonate): approximated with data from iron sintering (ecoinvent v1.1)
- Lithium hydroxide (hydration of lithium carbonate): all data estimated
Example: Ammonium thiocyanate

- $\text{CS}_2 + 2\text{NH}_3 \rightarrow \text{NH}_4\text{SCN}$
- All data are estimated
- Raw materials: calculated with an estimated yield of 95%
- Cooling water: estimated with Gendorf 2000
- Energy consumption: estimated with Gendorf 2000
- Transports and infrastructure: ecoinvent standard values
- Emissions to air: estimated as 0.2% of input
- Emissions to water: calculated from mass balance

Thank you for your information

References:

Example: Chlorobenzene

<table>
<thead>
<tr>
<th>input</th>
<th>Chlorination of benzene</th>
<th>kg per kg monochlorobenzene</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene (kg)</td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td>Chlorine (kg)</td>
<td></td>
<td>0.796</td>
</tr>
<tr>
<td>Sodium hydroxide (kg)</td>
<td></td>
<td>0.225</td>
</tr>
<tr>
<td>auxiliaries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process water (kg)</td>
<td></td>
<td>0.9047</td>
</tr>
<tr>
<td>Cooling water (kg)</td>
<td></td>
<td>27.315</td>
</tr>
<tr>
<td>energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam (MJ)</td>
<td></td>
<td>1.201</td>
</tr>
<tr>
<td>Electricity (kWh)</td>
<td></td>
<td>0.0478</td>
</tr>
</tbody>
</table>

Output

emissions to air		
process		
Benzene, to air (kg)		0.0266
Waste heat (MJ)		0.0172
emissions to water		
Benzene, to water (kg)		0.105
Monochlorobenzene, to water (kg)		0.0969
Sodium chloride, to water (kg)		0.328
o-Dichlorobenzene, to water (kg)		0.00469
COD, BOD (kg)		0.638
TOC, DOC (kg)		0.184

Approximations

Highly pure chemical

- Hydroxyl monoethanolamine > monoethanolamine
- Hydrogen bromide > hydrogen chloride
- Diazo film > polyethylene terephthalate
- Anti tarnish > chromium/zinc at a ratio of 4:1
- Glas cleaner > ethanol
- Foam Free 940 Defoamer > polyethylene
- Solder leveller (HAZL) > tin

used ecoinvent DS

Highly pure chemical

- Hydroxyl monoethanolamine > monoethanolamine
- Hydrogen bromide > hydrogen chloride
- Diazo film > polyethylene terephthalate
- Anti tarnish > chromium/zinc at a ratio of 4:1
- Glas cleaner > ethanol
- Foam Free 940 Defoamer > polyethylene
- Solder leveller (HAZL) > tin