Uncertainty reduction in consequential LCA models

Presentation for the LCA XI conference, Chicago, 2011.10.04-06.

Bo Weidema
ecoinvent Centre
Uncertainty reduction in consequential LCA models

- The sources of uncertainty
- Measurement or estimation in the ecoinvent database
- Uncertainty reduction
Sources of uncertainty in consequential LCA models

- Data
- Completeness
- Aggregation level
- Geography
- Modelling
- Forecasting
Data uncertainty

- Basic data uncertainty is reported for each data point
- Defaults applied when measured data are insufficient
- Additional uncertainty related to data quality is estimated with the pedigree matrix approach - including uncertainty from extrapolating or interpolating
Uncertainty related to completeness

- Completeness of data behind a specific datapoint → DQI
- Missing data points → Replace by extrapolated data with a higher uncertainty
- Example: 5 kWh +/- [BU+DQI] purchased from Quebec; missing data from Quebec
  - use data from CAN instead?
  - extrapolate (interpolate) Quebec data, e.g. from CAN, adding higher pedigree scores
- Data and completeness uncertainties are thereby treated in the same way and can be handled via normal simulation with e.g. Latin hypercube sampling.
Uncertainty related to the model assumptions

- Some related to specific data points (production volumes, market trends) → can be treated in line with the afore
- Some related to fixed model parameters:
  - market delimitations
  - capital replacement rate
  - technology levels
  - market constraints or elasticities

which can only be assessed by sensitivity analyses with manual modifications for each model run (although parametarisation may be used to facilitate this).
Uncertainty related to forecasting

- The outlined approach can also be applied to forecasted data (data for years into the future)
  - increasing the temporal pedigree score for each data point
  - using a wider range of settings for the fixed model parameters in the sensitivity analyses
Uncertainty reduction

- Reducing the largest uncertainties first
- Differentiating between reducible and irreducible uncertainty